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ABSTRACT

This paper presents an in-depth survey on network bandwidth allocation policies and discuss design methodologies
of distributed rate calculation algorithms in packet-switched networks. In particular, we discuss two rate allocation
policies: the generalized max-min (GMM) and the generic weight-proportional max-min (WPMM) policies, both of
which generalize the classical max-min rate allocation policy. For the design of distributed algorithms to achieve
these two rate allocation policies, we focus on rate-based distributed 
ow control where special control packets are
employed to achieve the information exchange between a source and the network. We categorize two broad classes of
distributed rate calculation algorithms in the literature using live algorithms as illustrations. We compare the design
tradeo�s between these two classes of algorithms in terms of performance objectives and implementation complexities
and discuss important extensions within each class of algorithms.

Keywords: Max-min fairness, minimum rate, peak rate, rate allocation policy, congestion and 
ow control algo-
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1. INTRODUCTION

The available bit rate (ABR) service class de�ned by the ATM Forum supports applications that allow the ATM
source end system to adjust the information transfer rate based on the bandwidth availability in the network.4 Our
objective in this paper is not to repeat the ATM ABR details and standards, which we refer to overview papers
such as Ref. 2,9,12,15,29, but rather, to capture the underlying principles of such rate-based feedback control. This
paper is targeted to readers who already have some familiarity with rate-based 
ow control and would like to have an
in-depth understanding of such tra�c control algorithms. In particular, we o�er a systematic study on the network
bandwidth allocation policies and discuss the design methodologies of distributed rate calculation algorithms in the
broader context of packet switching networks. We show that the materials covered in this paper is very general and
can be applied to any 
ow oriented packet switching networks, even though for convenience, we use ABR terminology
to illustrate a particular distributed rate calculation algorithm.

We start with a brief description of the classical max-min rate allocation policy,5 which has been widely accepted
as an optimal network bandwidth sharing criterion among user tra�c 
ows, including for ATM ABR service.� The
classical max-min rate allocation policy cannot support a minimum rate requirement and a peak rate constraint for
each 
ow. To address this issue, we present two network bandwidth sharing policies, each of which is a generalization
of the classical max-min. The �rst policy, called the generalized max-min (GMM), makes a direct generalization of
the max-min by �rst satisfying each 
ow's minimum rate requirement and then maximizes the rate of the session
that is the smallest among all sessions while satisfying this session's peak rate constraint, given the best smallest
rate allocation, we continue to maximize the rate of the connection with the second smallest rate, and so forth. The
second policy, called the generic weight-proportional max-min (WPMM), associates a weight with each session. It
allocates each session its minimum rate requirement and shares the remaining network bandwidth among user 
ows
using a weight proportional version of the max-min policy based on each 
ow's weight. We show that the classical
max-min rate allocation is a special case of both the GMM and the WPMM policies.

Since a centralized algorithm for either the GMM or the WPMM rate allocation requires global network informa-
tion, which is di�cult to obtain, we are interested in the design of distributed algorithms to achieve the same rate

�We use the terms \
ow", \session", \connection", and \virtual connection" interchangeably throughout the paper.



allocation objective in the absence of global knowledge about the network and without synchronization of di�erent
network components. We consider a network in which the switches maintain their own controls and communicate
these controls to the source by feedback. In particular, we focus on the end-to-end rate-based feedback control
scheme, where special control packets are used in both forward and backward paths. The source uses control packets
in the forward path to inform the switches about the source's rate information. The switches perform rate calcula-
tions for each 
ow and use the control packets in the backward path to advise the sources to adjust their rates. Our
goal is to properly design this overall networking protocol so that eventually each source's rate conforms to our rate
allocation objective (i.e. GMM or WPMM).

Since the focus of this paper in on the design of distributed rate calculation algorithms that can converge to our
GMM or WPMM rate allocation policy, we will consider only the so-called explicit rate feedback control algorithms
and will not discuss any binary feedback algorithm (e.g. Ref. 36,43), which has rate oscillations and strictly speaking,
does not converge to a particular rate allocation policy.

We classify the explicit rate calculation algorithms into two broad classes based on how much state information
for each tra�c 
ow is required at the switch. Class 1 algorithms employ only a few switch variables and use simple
heuristics to achieve the rate allocation objective. They do not require the switch to maintain the state information
of each traversing 
ow (also called per VC accounting for ABR). We show that such algorithms provides satisfactory
performance in a local area network environment. Class 2 algorithms use per 
ow accounting at a switch's output
port for rate calculation. With this additional complexity, such algorithms can provide guaranteed convergence to
the particular rate allocation objective under any network con�guration and any set of link distances.10,22,24 We
compare these two classes of algorithms in terms of convergence property, sensitivity to system parameters, state
requirement, computational complexity, etc. and show that the design of these two classes of algorithms are tradeo�s
between performance objectives and implementation complexity. Both Class 1 and Class 2 algorithms are rate
calculation algorithms and do not impose any special requirements on bu�ering and scheduling schemes. In fact,
most of Class 1 and Class 2 algorithms assume a simple shared bu�er and a FIFO scheduling policy. We will discuss
how sophisticated bu�ering and scheduling policies can be employed to further enhance the performance of each class
of algorithms.

The reminder of this paper is organized as follows. Section 2 presents the generalized max-min (GMM) and
the generic weight-proportional max-min (WPMM) policies. Section 3 classi�es existing distributed rate calculation
algorithms in the literature into two broad classes and discuss the design tradeo�s between these two classes of
algorithms in terms of performance objectives and implementation complexities. Some important extensions within
each class of algorithms are also discussed. Section 4 concludes this paper.

2. RATE ALLOCATION POLICIES

We are interested in optimal allocation of network bandwidth for each user connection in a packet switching network.
Speci�cally, we want to have a rate allocation be feasible in the sense that the total throughput of all sessions crossing
any link does not exceed that link's capacity; we also want the feasible rate allocation to be fair to all sessions and
the network to be utilized as much as possible.

In this section, we �rst brie
y review of the classical max-min rate allocation policy, which has been widely
accepted as a fair and e�cient criterion to allocate network bandwidth.5 Then we move on to generalize the classical
max-min policy.

2.1. The Classical Max-Min

We use the the following simple example to illustrate the basic concept of max-min rate allocation.

Example 1. As shown in Fig. 1, one session (s1) 
ows the tandem connection of all links, and other sessions go
through only one link. It is plausible to limit sessions 1, 2, and 3 to a rate of 1

3
each, since this gives each of these

sessions as much rate as the others. It would be rather pointless, however, to restrict session 4 to a rate of 1
3
. Session

4 might better limited to 2
3
, since any lower limit would waste some of the capacity of Link23 without bene�ting

sessions 1, 2, or 3, and any higher limit would be unfair because it would further reduce session 1. 2

This example leads to the idea of maximizing the network use allocated to the sessions with the minimum
allocation, thus giving rise to the term max-min 
ow control. After these poorly treated sessions are given the
greatest possible allocation, there might be considerable latitude left for choosing allocations for the other sessions.
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Figure 1. Four sessions sharing a three-node network.

It is then reasonable to maximize the allocation for the most poorly treated of these other sessions, and so forth,
until all allocations are speci�ed. An alternative way to express this intuition, which turns out to be equivalent to
the above, is to maximize the allocation of each session subject to the constraint that an incremental increase in i's
allocation does not cause a decrease in some other session's allocation that is already as small as i's or smaller.

We use the following simple mathematical notation to model max-min rate allocation in a network. We assume
that a network N is characterized by interconnecting switches with a set of links L. A set of sessions S are using
the network and each session s 2 S traverses one or more links in L. We denote by rs the allocated rate for session
s and S` the set of sessions traversing link `. The aggregated 
ow on link ` of the network is then F` =

P
s 2 S`

rs.

Let C` be the capacity of link `, we have the following constraints on the vector r = frs j s 2 Sg of allocated
rates: 1) rs � 0 for all s 2 S; and 2) F` � C` for all ` 2 L. A vector satisfying these constraints is said to be feasible.

A vector of rate r is said to be max-min fair if it is feasible and for each s 2 S, rs cannot be increased while
maintaining feasibility without decreasing rt for some session t for which rt � rs. More formally, r is max-min fair
if it is feasible, and for each s 2 S and feasible r̂ for which rs < r̂s, there exists some session t 2 S such that rs � rt
and rt > r̂t.

Given a feasible rate vector r, we say that a link ` 2 L is a bottleneck link with respect to r for a session s
traversing ` if F` = C` and rs � rt for all sessions t traversing link `.

In Example 1, the bottleneck links of sessions 1, 2, 3, and 4 are Link12, Link12, Link12, and Link23, respectively.
Link23 is not a bottleneck link for session 1 since sessions 1 and 4 share this link and session 4 has a larger rate than
session 1.

It turns out that in general, each session has a bottleneck link and a feasible rate vector r is max-min fair if and
only if each session has a bottleneck link with respect to r.

In the following, we give an algorithm for computing max-min fair rate vector. The idea of the algorithm is to
start with all-zero rate vector and to increase the rates on all sessions together until F` = C` for one or more links
`. At this point, each session using a saturated link (i.e., a link with F` = C`) has the same rate as every other
session using that link. Thus, these saturated links serves as bottleneck links for all sessions using them. At the next
step of the algorithm, all sessions not using the saturated links are incremented equally in rate until one or more
links become saturated. Note that the sessions using the previously saturated links might also be using these newly
saturated links. The newly saturated links serve as bottleneck link for these sessions that pass through them but
do not use the previously saturated links. The algorithm continues from step to step, always equally incrementing
all sessions not passing through any saturated link; when all sessions pass through at least one saturated link, the
algorithm stops.

Algorithm 1. Max-Min Rate Allocation

1. Start the rate allocation of each session with zero.

2. Increase the rate of each session with the smallest rate such that some link becomes saturated.

3. Remove those sessions that traverse saturated links and the capacity associated with such sessions from the
network.

4. If there is no session left, the algorithm terminates; otherwise, go back to Step 2 for the remaining sessions and
network capacity. 2



Table 1. Minimum rate requirement, peak rate constraint, and GMM rate allocation for each session in the three-
node network.

Session MR PR GMM Rate Allocation
s1 0.40 1.00 0.40
s2 0.10 0.25 0.25
s3 0.05 0.50 0.35
s4 0.10 1.00 0.60

Applying the above algorithm for the four-session three-node network in Example 1, it is easy to show that
sessions 1, 2, and 3 get a rate of 1

3
and session 4 gets a rate of 2

3
.

It can be easily seen that the max-min rate allocation is fair in the sense that all sessions constrained by a
particular bottleneck link get an equal share of this bottleneck capacity. It is also e�cient in the sense that given
the max-min rate allocation, no session can push more 
ow of data through the network, since each session traverses
at least one fully saturated link.

2.2. Generalized Max-Min

Let MRs and PRs be the minimum rate requirement and the peak rate constraint for each session s 2 S. We
assume that the sum of all sessions' minimum rate traversing any link does not exceed the link's capacity, i.e.,P

s 2 S`
MRs � C` for every ` 2 L. This assumption is enforced by admission control at call setup time to determine

whether or not to accept a new connection.

We say that a rate vector r = frs j s 2 Sg is MP-feasible if it satis�es the minimum rate and peak rate constraints
for each session and it is feasible, i.e., 1) MRs � rs � PRs for all s 2 S; and 2) F` � C` for all ` 2 L.

The generalized max-min (or GMM) rate allocation holds the same fundamental concept as the classical max-
min policy, i.e., maximizing the minimum rate among all sessions (while satisfying each session's minimum rate
requirement and peak rate constraint), given the best smallest rate allocation, maximize the second smallest rate
allocation, and so forth.

Algorithm 2. GMM Rate Allocation

1. Start the rate of each session with its MR.

2. Increase the rate of the session with the smallest rate among all sessions until one of the following events
takes place: (1) The rate of such session reaches the second smallest rate among the sessions; or (2) Some link
saturates; or (3) The session's rate reaches its peak rate (PR).

3. If some link saturates or the session's rate reaches its PR in Step 2, remove the sessions that either traverse the
saturated link or reach their PRs, respectively, as well as the network capacity associated with such sessions
from the network.

4. If there is no session left, the algorithm terminates; otherwise, go back to Step 2 for the remaining sessions and
network capacity. 2

Example 2. We use the same four-session three-node network in Fig. 1. The minimum rate requirement and
peak rate constraint for each session are listed in Table 1.

The iterative steps to achieve the GMM rate allocation are listed below, with a graphical display shown in Fig. 2.

� Step 1: As shown in Fig. 2, we start the rate of each session with its MR (shown in the darkest shaded areas
in Fig. 2).

� Step 2: Since the rate of s3 (0.05) is the smallest among all sessions, we increase it until it reaches the second
smallest rate, which is 0.1 (s2 and s4).
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Figure 2. Rate allocation for each session at each iteration for the GMM policy in the three-node network.

� Step 3: The rates of s2, s3 and s4 all being 0.1, we increase them together until s2 reaches its PR constraint
of 0.25.

� Step 4: Remove s2 (with a rate of 0.25) from future iterations and we now have the rates of 0.40, 0.25, and 0.25
for s1, s3 and s4, respectively, with a remaining capacity of 0.10 and 0.35 on Link12 and Link23, respectively.

� Step 5: Since s3 and s4 both have a smaller rate (0.25) than s1 (0.4), we increase the rates of s3 and s4 to
0.35 and Link12 saturates.

� Step 6: Remove s1 (with a rate of 0.40) and s3 (with a rate of 0.35) from future iterations and we now have
s4 as the remaining session (with a rate of 0.35) and remaining capacity on Link23 is 0.25.

� Step 7: Increase the rate of s4 to 0.60 and Link23 saturates. The �nal rates are 0.40, 0.25, 0.35, and 0.60 for
s1, s2, s3, and s4, respectively. 2

Remark 1. As can be noted in the above example, the GMM policy favors sessions with small MR requirements
over those with large MRs in terms of sharing the remaining network capacity (network capacity minus MRs of all
sessions). This may appear to be (and in some circumstances is) \unfair" to sessions with large MR requirements.
We therefore advocate the use of the GMM policy only when network management policy is to discourage MR-greedy
users while being fair to users requesting the smallest required MR for a given application. This situation may arise
in networks where users are not explicitly charged for network resources used (e.g. employees within a corporate
enterprise network). In such an environment, the GMM policy attempts to achieve equality in bandwidth sharing
by �rst considering the session with the smallest MR. 2

Formally, we say that a rate vector r is Generalized Max-Min (GMM) if it is MP-feasible, and for every s 2 S
and every MP-feasible rate vector r̂ in which r̂s > rs, there exists some session t 2 S such that rs � rt, and rt > r̂t.

Given a MP-feasible rate vector r, a link ` 2 L is a GMM-bottleneck link with respect to r for a session s
traversing ` if F` = C` and rs � rt for every session t traversing link ` for which rt > MCRt.

It can be shown that a MP-feasible rate vector r is GMM if and only if each session has either a GMM-bottleneck
link with respect to r or a rate allocation equal to its PR.22

In Example 2, Link12 is a GMM-bottleneck link for both s1 and s3. On the other hand, s1 and s3 have di�erent
rate allocation (0:4 for s1 and 0:35 for s3). Thus, it is essential to have a precise de�nition of GMM-bottleneck link
rate here.

Let 1+fevent Ag be the indicator function with the following de�nition:

1+fevent Ag =

�
1 if event A is true;
0 otherwise.



Given a GMM rate vector r, suppose that link ` 2 L is a GMM-bottleneck link with respect to r and let �` denote
the GMM-bottleneck link rate at link `. Then �` satis�es

�` �
X
i2U`

1+fMRi � �`g+
X
i2U`

MRi � 1+fMRi > �`g = C` �
X
i2M`

ri
`
; (1)

where U` denotes the set of sessions that are GMM-bottlenecked at link `, and M` denotes the set of sessions that
are either GMM-bottlenecked elsewhere or have a rate allocation equal to their PRs and ri

`
< �` for every i 2M`.

With the above clari�cation, it is easy to show that in Example 2 the GMM-bottleneck link rates are 0.35 at
Link12 and 0.60 at Link23.

Note that in the special case when MRs = 0 for every s 2 S, the GMM-bottleneck link rate �` in Eq. (1) becomes:

�` � jU`j = C` �
P

i2M`
ri
`
, or �` =

C`�
P

i2M`

r
i

`

jU`j
, where jU`j denotes the number of sessions bottlenecked at link `.

This is exactly the expression for the classical max-min bottleneck link rate de�nition at a saturated link `.

It should be clear that by Algorithm 2 and the GMM-bottleneck link rate de�nition in Eq. (1), the GMM rate
allocation for a session s 2 S can only be one of the following: 1) A rate equal to its MR; or 2) A rate equal to its
PR; or 3) A rate equal to its GMM-bottleneck link rate.

2.3. Generic Weight-Proportional Max-Min

Under this policy, we associate each connection s 2 S with a weight (or priority) ws.y Informally, the WPMM
policy �rst allocates to each connection its MR. Then from the remaining network capacity, it allocates additional
bandwidth for each connection using a proportional version of the max-min policy based on each connection's weight
while satisfying its PR constraint. The �nal bandwidth for each connection is its MR plus an additional \weighted"
rate share.

Our WPMM rate allocation policy presented here generalizes the so-called MCRadd and MCRprop policies in
Ref. 26,44. Both MCRadd and MCRprop �rst guarantee the minimum rate of each connection. Under MCRadd,
the remaining network bandwidth is shared among all connections using the max-min policy, i.e., equal weight
for all connections; while under MCRprop, the remaining bandwidth is shared among all connections using MCR-
proportional max-min policy. Both the MCRadd and MCRprop policies are special cases of WPMM policy since the
weight for each connection under WPMM can be generically assigned, i.e., independent of (decoupled from) its MR
or PR.

The following is a centralized algorithm to compute rate allocation for each connection under the WPMM policy.

Algorithm 3. Weight-Proportional Max-Min (WPMM)

1. Start the rate allocation of each connection with its MR.

2. Increase the rate of each connection with an increment proportional to its weight until either some link becomes
saturated or some connection reaches its PR, whichever comes �rst.

3. Remove those connections that either traverse saturated links or have reached their PRs and the capacity
associated with such connections from the network.

4. If there is no connection left, the algorithm terminates; otherwise, go back to Step 2 for the remaining connec-
tions and remaining network capacity. 2

We use the following example to illustrate how the WPMM rate allocation works.

Example 3. Again, we use the four-session three-node network in Fig. 1. The minimum rate requirement, peak
rate constraint and weight for each session are listed in Table 2, as well as the WPMM rate allocation for each session.
Table 3 shows the results of rate allocation for each session at the end of each iteration of Algorithm 3, which are
described as follows.

� Step 1: As shown in the initialization procedure of Table 3, we start the rate of each session with its MR.

yWe assume a positive weight assignment for each connection.



Table 2. Minimum rate requirement, peak rate constraint, weight, and rate allocation for each session for the
WPMM policy in the three-node network.

Session MR PR Weight WPMM Rate Allocation
s1 0.05 0.75 1 0.15
s2 0.15 0.90 3 0.45
s3 0.20 0.40 4 0.40
s4 0.10 1.00 2 0.85

Table 3. Rate allocation for each session after each iteration of WPMM algorithm in the three-node network.

Sessionf(MR, PR), wg Remaining Capacity
Iterations s1 s2 s3 s4 Link 12 Link 23

f(0.05, 0.75), 1g f(0.15, 0.90), 3g f(0.20, 0.40), 4g f(0.10, 1.00), 2g

initialization 0.05 0.15 0.20 0.10 0.60 0.85

1st 0.10 0.30 0.40 0.20 0.20 0.70

2nd 0.15 0.45 0.30 0 0.55

3rd 0.85 0

� Step 2: We increase the rate of each session with an increment proportional to its weight (1, 3, 4, and 2 for s1,
s2, s3 and s4, respectively) until session s3 reaches its PR constraint (0.40).

� Step 3: Remove s3 (with a rate of 0.40) from future iterations and we now have the rates of 0.10, 0.30, and 0.20
for s1, s2 and s4, respectively, with a remaining capacity of 0.20 and 0.70 on Link12 and Link23, respectively.

� Step 4: We increase the rates of the remaining sessions (s1, s2, and s4), each with an increment proportional
to its weight until Link 12 saturates.

� Step 5: Remove s1 (with a rate of 0.15) and s2 (with a rate of 0.45) from future iterations and we now have
s4 as the remaining session (with a rate of 0.30) and remaining capacity on Link23 is 0.55.

� Step 6: Increase the rate of s4 to 0.85 and Link23 saturates. The �nal rates are 0.15, 0.45, 0.40, and 0.85 for
s1, s2, s3, and s4, respectively. 2

Formally, we say that a rate vector r is weight-proportional max-min (WPMM) if it is MP-feasible, and for
each s 2 S and every MP-feasible rate vector r̂ in which r̂s > rs, there exists some connection t 2 S such that
rs�MRs

ws

� rt�MRt

wt

and rt > r̂t.

Given a MP-feasible rate vector r, a link ` 2 L is a WPMM-bottleneck link with respect to r for a connection s

traversing ` if F` = C` and
rs�MRs

ws
� rt�MRt

wt
for all connections t traversing link `.

It can be shown that an MP-feasible rate vector r is WPMM if and only if each connection has either a WPMM-
bottleneck link with respect to r or a rate assignment equal to its PR. In the special case, when 1) each session's MR
is zero; 2) there is no PR constraint; and 3) each session has equal weight, the WPMM rate allocation degenerates
into the classical max-min rate allocation.

We have presented two rate allocation polices that generalize the classical max-min. In the next section, we will
focus on the design of distributed algorithms to achieve these rate allocation policies in a fully distributed networking
environment. In particular, we will study the rate-based explicit feedback control algorithms.

3. EXPLICIT FEEDBACK CONTROL ALGORITHMS

There have been extensive e�orts on the design of distributed algorithms to achieve the classical max-min rate
allocation. The algorithms by Hayden,20 Ja�e,27 Gafni,16 and Abraham1 required synchronization of all nodes for
each iteration, which is impractical in real world packet switching networks. Mosely's work in Ref. 33 was the �rst



.  .  .
End End

Source

System

Destination

System

Data Packet
Forward

Control Packet
Forward

Backward
Control Packet

Figure 3. Rate-based end-to-end 
ow control mechanism for a session.

asynchronous algorithm. Unfortunately, this algorithm could not o�er satisfactory convergence performance. The
algorithms by Ramakrishnan-Jain-Chiu36 and Yin43 relies on using a single bit as feedback to indicate congestion.
Due to the binary nature of such algorithms, the source's rate exhibited oscillations.

Recent interest in ATM ABR service have led to many contributions to the design of distributed algorithms to
achieve the classical max-min. In this section, we �rst brie
y describe the rate-based 
ow control mechanism, where
special control packets are employed to exchange the rate information between a source and the network. Since the
focus of this paper is on the design of distributed algorithms that have good convergence property to our GMM or
WPMM rate allocation, we will consider only the so-called explicit rate feedback control and will not discuss any
binary feedback control algorithm, which is oscillatory in nature and has poor convergence property.

We outline two broad classes of explicit rate control algorithms. Both algorithms have the common property that
only a simple shared bu�er and FIFO scheduling are required at the switch output port. We will discuss the design
tradeo�s between these two classes of algorithms in term of performance objectives and implementation complexity.
After we show the fundamental properties of each class of algorithms, it becomes straightforward for us to discuss
how more sophisticated bu�ering strategy (e.g. per 
ow queuing) and scheduling policies can be incorporated to
further improve the performance of each class of algorithms.

3.1. Rate-Based Flow Control Mechanism

It is easy to see that any distributed 
ow control algorithm achieving the GMM or WPMM policy must employ some
kind of cooperation between the sources and the network. Such cooperation should include the following two key
components: 1) Information exchange between each source and the network; and 2) Source rate adaptation upon
receiving feedback from the network.

Our design of distributed 
ow control algorithm maintains some link controls at the switch level and conveys
information about these controls to the source by means of feedback. Upon the receipt of the feedback signal, the
source adjusts its estimate of the allowed transmission rate according to some rule. Speci�cally, we employ an end-
to-end closed-loop feedback scheme, in which control packets are used in both forward and backward paths. A source
uses control packets in the forward path to inform the switches about the source's rate information. The switches
perform calculations and use the control packets in the backward path to advise the sources on how to adjust their
rates. Our work is to properly design this overall network protocol so that eventually each source's rate conforms to
our prede�ned centralized objective, i.e. the GMM or WPMM rate allocation policy.

Since a major motivation of this work came from the research on the ATM ABR service, we will use some ABR
terminologies by ATM Forum when we illustrate various design alternatives and tradeo�s. As we shall see, the design
methodology discussed here is very general and is applicable to any 
ow oriented packet network.

A rate-based closed-loop 
ow control mechanism is shown in Fig. 3. Special control packets (also called Resource
Management (RM) cells in ATM ABR) are employed and are inserted periodically among data packets (or cells for
ATM) to exchange information between a source and the network. Note that these control packets are used once
every, say Nrm , data packets, rather once for every �xed time interval. Such choice will guarantee that the control
overhead for each session is �xed at a marginal percentage (i.e., 1=(Nrm + 1)) and thus is scalable as the number
of sessions in the network increases.

To achieve information exchange, the source sets the �elds in the forward RM cells to inform the network about
the source's rate information (e.g. MCR, PCR, CCR) and weight assignment. For each traversing RM cell at a
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switch, the switch performs some calculations based on the information carried in this RM cell and at the switch.
We let the network (switches) set the �elds in the backward RM cells to inform the source. To achieve source rate
adaptation, the source adjusts its transmission rate upon receiving a backward RM cell.

3.2. A Class of Heuristic Algorithms

Algorithms in this category are designed to approximate the desired rate allocation for each session by using queue
length information in conjunction with the CCR value available in the RM cells.6,13,34,37,38 A switch maintains a
running average variable to calculate the share rate for each session, based on the level of congestion and CCR. This
class of algorithms are based on simple heuristic to achieve the desired rate allocation and do not require the switch
to maintain a table and to keep track of the state information of each traversing 
ow.

The Intelligent Marking technique by Siu and Tzeng, originally proposed in Ref. 38, and further re�ned in
Ref. 39,41 best represents the properties of this class of algorithms. It o�ers satisfactory performance in achieving
the classical max-min policy in a local area environment with minimal implementation complexity. For the purpose
of demonstrating the properties of this class of algorithms, we will examine this algorithm in detail.

3.2.1. Intelligent marking for max-min

The key idea of Intelligent Marking technique is to employ a small number of variables and use a small number of
computations at each switch output port to estimate the max-min bottleneck link rate. Using a simple feedback
mechanism, the ER �eld of a returning RM cell is set to the minimum of all the estimated bottleneck link rates on
all its traversing links to achieve max-min share.

Figure 4 illustrates the switch behavior of the Intelligent Marking technique.39,41 Four variables MCCR (Mean
CCR), UCR (Upper Cell Rate), EBR (Estimated Bottleneck Rate) and LOAD are de�ned for the following purpose:
1) MCCR contains an estimated average cell rate of all VCs traversing this link; 2) UCR contains an estimated
upper limit of the cell rates of all VCs traversing this link; 3) EBR contains an estimated bottleneck link rate; and
4) LOAD corresponds to the aggregated cell rate entering the queue normalized with respect to the link capacity
and is measured over a period of time. Furthermore, two parameters TLR and � are de�ned at each output port,
where the value of TLR is the desired or Targeted Load Ratio (0 < TLR � 1) and 0 < � < 1.

The Intelligent Marking algorithm is a heuristic algorithm. We can only give an intuitive explanation on how it
works. The RM cells from all VCs participate in the exponential averaging for MCCR with MCCR := MCCR +
�(CCR�MCCR) while only those VCs with CCR greater than MCCR (potentially VCs bottlenecked at this link)
participate in UCR averaging. EBR is used to estimate the max-min bottleneck link rate and is based on UCR and
LOAD variables. Since 1) there can be only one max-min bottleneck rate at a link and it is greater than or equal to
any of the VC's rate traversing this link; and 2) the returning RM cell's ER �eld is set to the minimum of all the
bottleneck link rates along its path, the �nal rate allocation through the Intelligent Marking achieves max-min share
rate for each VC.

Another interesting fact is that the MCCR is larger than the algebraic average of each VC's CCR traversing this
link. This is because MCCR is updated more frequently by those VCs with relatively larger CCR than those with
relatively smaller CCR traversing the same link.

The most attractive feature of the Intelligent Marking technique is its low implementation cost. It does not
require each output port of a switch to keep track of each traversing 
ow's state information (so called per VC
accounting) and has O(1) storage requirements and computational complexity.
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Figure 5. Switch behavior for the WPMM policy.

It has been shown that the Intelligent Marking technique can be extended to support the GMM and WPMM
rate allocation policies in Ref. 21 and Ref. 23, respectively. Due to paper length limitation, we will illustrate here
how to extend Intelligent Marking for the WPMM rate allocation.23

3.2.2. Extending intelligent marking for WPMM

We �rst specify the source and destination's behaviors of each connection.

Algorithm 4. End System Behavior

Source Behavior:z

1) The source starts to transmit at ACR := ICR, which is greater than or equal to its MCR;
2) For every Nrm transmitted ATM data cells, the source sends a forward RM(CCR, MCR, ER, w) cell with: CCR
:= ACR; MCR := MCR; ER := PCR; w := w;
3) Upon the receipt of a backward RM(CCR, MCR, ER, w) cell from the destination, the ACR at the source is
adjusted to: ACR := maxfminf(ACR+AIR); ERg; MCRg.

Destination Behavior: The destination end system of a connection simply returns every RM cell back towards the
source upon receiving it. 2

Since the WPMM policy �rst allocates each session with its MCR, and then allocates the remaining network
bandwidth to each session using the w-proportional max-min policy (Algorithm 3), this motivates us to let the
CCR and ER �elds of a traversing RM cell be �rst o�setted by its MCR, and then normalized with respect to the

connection's weight w (i.e. CCR�MCR
w

, ER�MCR
w

) to participate in the Intelligent Marking algorithm.

Note that we let the source set the weight of a connection into some unspeci�ed �eld in the forward RM cell.
Therefore, in a manner similar to the Intelligent Marking technique, there is no need here to use per 
ow accounting
to keep track of the weight information of each 
ow at the switch output port.

Figure 5 illustrates our switch algorithm for the WPMM policy. Four variables named LOAD, NMR (Normalized
Mean Rate), NUR (Normalized Upper Rate) and NBR (Normalized Bottleneck Rate) are de�ned at each output port
of an ATM switch. The value of LOAD corresponds to the aggregated cell rate entering the output queue normalized
with respect to the link capacity. It is measured at the switch output port over a period of time. The value of NMR
contains an exponential averaging of (CCR � MCR)/w for all VCs traversing this link; the value of NUR contains
an exponential averaging of (CCR � MCR)/w only for VCs with (CCR � MCR)/w > NMR; and NBR contains an
estimated normalized WPMM bottleneck link rate. Here, NMR, NUR and NBR are all dimensionless. TLR is the
Targeted Load Ratio (0 < TLR � 1) at the switch output port and 0 < � < 1.

Algorithm 5. Switch Behavior for WPMM Rate Allocation

Upon the receipt of RM(CCR, MCR, ER, w) from the source of a VC
if (CCR � MCR)/w > NMR, then NUR := NUR + � [(CCR � MCR)/w - NUR];
NMR := NMR + � [(CCR � MCR)/w - NMR];
Forward RM(CCR, MCR, ER, w) to its destination;

zWe use a simpli�ed version of source and destination behavior, which does not include the use-it-or-lose-it option.4 The AIR parameter

is also denoted as PCR � RIF in Ref. 4.



Table 4. Simulation parameters.

End PCR PCR
System MCR MCR

ICR MCR
Nrm 32
AIR (= PCR �RIF) 3.39 Mbps

Link Speed 150 Mbps
Switch Cell Switching Delay 4 �Sec

TLR 1
� 0.125
Load/Utilization Measurement Interval 500 �Sec
Queue Threshold for ER Adjustment 50 cells
Output Bu�er Size 2000 cells
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Figure 6. The cell rates of all connections, the link utilization and the queue size of the congested switches in the
three-node network con�guration.

Upon the receipt of RM(CCR, MCR, ER, w) from the destination of a VC
NBR := NUR * TLR / LOAD;
if (QS > QT),x then NBR := (QT / QS) * NBR;
if (ER � MCR)/w > NBR, then ER := w � NBR + MCR;
Forward RM(CCR, MCR, ER, w) to its source. 2

We use a set of simulation results to demonstrate the performance of our distributed algorithm for the WPMM
rate allocation. The network con�guration is the four-session three-node network shown in Fig. 1, with the minimum
rate requirement and peak rate constraint for each session listed in Table 2. Table 4 lists the parameters used in our
simulation. The distance from an end system (source or destination) to the switch is 100 m and the link distance
between switches is 10 km (corresponding to a local area network) and we assume that the propagation delay is 5
�s per km. The initial values of NMR and NUR at each switch output port are set to 0.

Simulation results for the cell rate of each session, the bottleneck link utilization and bu�er occupancy are shown
in Fig 6. We see that after the initial transient period, the cell rate of each session matches with the rate listed in
Table 2. Also, the bottleneck links are 100% utilized with reasonably small bu�er occupancies.

For a wide area network (WAN), our simple heuristic algorithm shown here for WPMM and Class 1 algorithms in
general require careful system parameter tuning to minimize oscillations. Thus, a more sophisticated algorithm using
per 
ow accounting will be much more e�ective, as we shall show in the next section. But in a LAN environment,

xThis step is a �ner adjustment of NBR calculation based on bu�er occupancy information and is not shown in Fig. 5 due to space

limitation. QS is the Queue Size of the output link and QT is a prede�ned Queue Threshold.



where implementation cost may well be the most important criterion in the choice of a switch algorithm, Class 1
algorithms o�er satisfactory performance with minimal implementation complexity.

3.3. Using Per Flow Accounting

The distributed 
ow control algorithms that fall into this category, as the name implies, employ a table at each output
port of a switch to keep track of the state information of each 
ow.3,8,10,17,28,30,35,40 In particular, the algorithm by
Charny et al. in Ref. 10 was one of the few algorithms that were proven to converge to max-min through distributed
and asynchronous iterations. This algorithm has been widely referred in the literature and is regarded as a major
milestone in the design of rate-based control algorithm for max-min. We will use this algorithm as an example to
show the fundamental properties of this class of algorithms that employ per 
ow accounting.

In Charny's algorithm, each switch monitors its tra�c by keeping track of the state information of each traversing
connection. Also, each output port of a switch maintains a variable called the advertised rate to calculate available
bandwidth for each connection. When a RM cell arrives at the switch, the CCR value of the connection is stored in
a VC table. If this CCR value is less than or equal to the current advertised rate, then the associated connection is
assumed to be bottlenecked either at this link or elsewhere and a corresponding bit for this connection is marked at
the VC table. Then the following equation is used to update the advertised rate:

Advertised Rate =
C` �

P
Rates of marked connections

n` �
P

Marked connections
; (2)

where C` and n` are the link capacity and the number of connections at link `. Then the VC table is examined again.
For each marked session, if its recorded CCR is larger than this newly calculated advertised rate, this session is then
unmarked and the advertised rate is calculated again. The ER �eld of an RM cell is then set to the minimum of all
advertised rates along its traversing links. Upon convergence, each session is allocated with a max-min rate and is
marked along every link it traverses.

It has been shown that the above session marking technique can be extended to design distributed 
ow control
algorithms for both the GMM and WPMM policies in Ref. 22 and Ref. 24, respectively. Due to paper length
limitation, we will only illustrate how to extend Charny's session marking technique to achieve the GMM rate
allocation.22

To extend Charny's algorithm for GMM, it is obvious the advertised rate calculation in Eq. (2) has to be modi�ed
to re
ect the GMM-bottleneck link rate calculation in Section 2.2. However, with such a GMM-bottleneck link rate
de�nition, it is not clear how to perform session marking for each traversing session. If we mark a session when its
CCR is less than or equal to the advertised rate as in Charny's technique, this may bring the advertised rate into a
state of oscillation that will never converge (due to some session having a large MCR)!

A deeper look at Charny's original algorithm for max-min shows that a session traversing its own max-min
bottleneck link does not need to be marked at this link. That is, at a saturated link, only sessions bottlenecked
elsewhere need to be marked. A small modi�cation as it may appear to be, this new marking criterion brings a whole
new marking property for sessions upon convergence. In fact, this is the key to resolve the di�culty of marking
sessions that are GMM-bottlenecked at the same link but with di�erent rates. In conjunction with the GMM-
bottleneck link rate de�nition and advertised rate calculation, this new marking technique leads to a fundamental
generalization of Charny's Consistent Marking technique.22

We �rst specify the end system behavior of our protocol.

Algorithm 6. End System Behavior

Source Behavior:
1) The source starts to transmit at ACR := ICR, which is greater than or equal to its MCR;
2) For every Nrm transmitted ATM data cells, the source sends a forward RM(CCR, MCR, ER) cell with: CCR :=
ACR; MCR := MCR; ER := PCR;
3) Upon the receipt a backward RM(CCR, MCR, ER) cell from the destination, the ACR at source is adjusted to:
ACR := ER.

Destination Behavior: The destination returns every RM cell back towards the source upon receiving it. 2

The switch maintains a table at each output port to keep track of the state information of each traversing 
ow
(so-called per VC accounting) and performs the switch algorithm (Algorithm 7) at this output port.



The following are the link parameters and variables used in our switch algorithm.

C`: Capacity of link `, ` 2 L.
RC`: Remaining Capacity variable at link ` used for �` calculation in Algorithm 8.
S`: Set of sessions traversing link `, ` 2 L.
n`: Number of sessions in S`, ` 2 L, i.e., n` = jS`j.
ri
`
: CCR value of session i 2 S` at link `.

MCRi: MCR requirement of session i.
bi
`
: Bit used to mark session i 2 S` at link `. b

i

`
= 1 if session i 2 S` is marked at link `, or 0 otherwise.

M`: Set of sessions marked at link `, i.e. M` = fi j i 2 S` and bi
`
= 1g.

U`: Set of sessions unmarked at link `, i.e. U` = fi j i 2 S` and bi
`
= 0g, and M` [ U` = S`.

�`: Advertised rate at link `.

The following algorithm shows the switch behavior for our GMM rate allocation, with each output link ` 2 L
initialized with: S` = ;; n` = 0; �` = C`.

Algorithm 7. Switch Behavior for GMM Rate Allocation

Upon the receipt of a forward RM(CCR, MCR, ER) cell from the source of session i f
if RM cell signals session exit{f

S` := S` � fig; n` := n` � 1;
table update();
g

if RM cell signals session initiation f
MCRi := MCR;
/* Insert a new record for this session in the table (a linked list of records) such that the MCR �elds of
the linked list of records re in increasing order. */
S` := S` [ fig; n` := n` + 1; ri

`
:= CCR; bi

`
:= 0;

table update();
g

else /* i.e. RM cell belongs to an ongoing session. */ f
ri
`
:= CCR; if (ri

`
< �`) then bi

`
:= 1;

table update();
g

Forward RM(CCR, MCR, ER) towards its destination;
g

Upon the receipt of a backward RM(CCR, MCR, ER) cell from the destination of session i f
ER := maxfminfER; �`g; MCRg;
Forward RM(CCR, MCR, ER) towards its source;

g

table update()
f

rate calculation 1: use Algorithm 8 to calculate advertised rate �1
`
;

Unmark any marked session i 2 S` at link ` with ri
`
� �1

`
;

rate calculation 2: use Algorithm 8 to calculate advertised rate �`;
if (�` < �1

`
), then f

Unmark any marked session i 2 S` at link ` with ri
`
� �`;

rate calculation 3: use Algorithm 8 to calculate advertised rate �` again;
g

g 2

{This information is conveyed through some unspeci�ed bits in the RM cell, which can be set either at the source or the UNI.
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Figure 7. The cell rates of all connections in the three-node network under the distributed GMM rate calculation
algorithm.

Algorithm 8. �` Calculation

if n` = 0, then �` := C`;
else if n` = jM`j, then �` := C` �

P
i2S`

ri
`
+maxi2S` r

i

`
;

else f

RC` := C` �
P

i2M`
ri
`
;

if (RC` <
P

i2U`
MCRi) then �` := 0;

else /* i.e. RC` �
P

i2U`
MCRi. */ f

/* Due to our particular VC table creation scheme, the unmarked sessions i 2 U` are already in increasing
order of their MCRs, i.e., MCR[1] � MCR[2] � � � � � MCR[jU`j]. */
k := jU`j; �` :=

RC`

k
;

while (�` < MCR[k]) f
RC` := RC` �MCR[k]; k := k � 1; �` :=

RC`

k
;

g
gk

g 2

It can be shown that after the number of active sessions in the network stabilizes, the rate allocation for each
session by our distributed 
ow control algorithm converges to the GMM rate allocation.22 Furthermore, an upper
bound for the convergence time to the �nal GMM rate allocation by our distributed protocol from the time when the
number of active sessions in the network stabilizes is given by 2:5KD, where K is the number of levels of bottleneck
link rates and D is an upper bound for the round-trip delay among all sessions.22 Note that K is less than or equal
to the number of sessions in the network, N , and is often signi�cantly less.

We use a set of simulation results to illustrate the performance of the above distributed algorithm. The network
con�guration we use is the same four-session three-node network shown in Fig. 1, with the minimumrate requirement
and peak rate constraint for each session listed in Table 1. The link speed is 150 Mbps. For stability, we set the
target link utilization to be 0.95. That is, we set C` = 0:95� 150 Mbps = 142:5 Mbps at every link ` 2 L for the ER
calculation. This will ensure that the potential bu�er build up during transient period will be eventually emptied
upon convergence. The distance from source/destination to the switch is 1 km and the link distance between switches
is 1000 km (corresponding to a wide area network) and we assume that the propagation delay is 5 �s per km. The
simulation results for the rate of each session are shown in Fig. 7. We �nd that after the initial transient period, the
rate of each session converges to the GMM rate allocation listed in Table 1 without any oscillations.

kThe combined steps in the bracket for \else" are equivalent to �nd the GMM-bottleneck link rate �` for the set of unmarked sessions

U` such that �` �
P

i2U`
1+fMCRi � �`g+

P
i2U`

MCRi �1+fMCRi > �`g = RC`. In the special case when MCRi = 0 for every i 2 U`,

�` =
RC`

jU` j
, i.e. the max-min share rate.



Table 5. Design tradeo�s between performance objectives and implementation complexity for the two classes of
explicit feedback control algorithms.

Class 1: Class 2:
Type of Algorithms Exponential Averaging Using Per Flow Accounting

without Per Flow Accounting
Convergence Guaranteed
Property Approximate Convergence

Rate Decoupling
Performance Property No Yes
Features Sensitivity to

System Parameters Yes No
Applicable
Networks LAN LAN and WAN
State

Requirement O(1) O(N )
Implementation Computational
Characteristics Complexity O(1) O(N )

Bu�ering and One shared queue One shared queue
Scheduling FIFO FIFO

3.4. Design Tradeo� Between Performance and Complexity

The two speci�c 
ow control algorithms described in Sections 3.2 and 3.3 best represent two broad classes of dis-
tributed rate calculation algorithms in the literature. They re
ect the design tradeo�s between performance objectives
and implementation complexity. Table 5 summarizes important tradeo�s between these two classes of algorithms.
In the following, we elaborate each item listed in Table 5 and discuss important extensions within each class of
algorithms.

Convergence Property

At steady state, the rate allocated to each 
ow through a distributed rate control algorithm should match the
intended rate allocation policy (e.g. WPMM or GMM) from any initial network conditions.

Class 1 heuristic algorithms, strictly speaking, do not converge to the rate allocation policy. At best, they only
approximate to the particular rate allocation objective. The accuracy of such approximation relies on the overall
system parameter tuning for the particular network con�guration and the set of link distances. On the other hand,
Class 2 algorithms can provide guaranteed convergence to the prede�ned rate allocation policy under any network
con�guration and any set of link distances.

Rate Decoupling Property

For Class 2 algorithms discussed in Section 3.3, note that in the source algorithm (Algorithm 6), the ACR of a source
is adjusted immediately upon receiving a returning RM cell. A closer look at the mechanics of the switch algorithm
(Algorithm 7) reveals that the ACR variable at a source (recorded as CCR in the forward RM cell) is used as a
variable solely for the purpose of distributed protocol convergence iterations and a source's true transmission rate
does not a�ect the convergence property. That is, a source's true transmission rate does not have to be identical to
its ACR at all times. For example, as long as a source's true transmission rate is between its MCR and ACR, the
overall feedback control protocol can still operate properly (i.e. the ACR for each connection will converge to our
optimal rate allocation). This rate decoupling property is a consequence of our special design of the switch algorithm
where a table is employed to keep track of the traversing connections and their rate information, and the fact that
the bu�er occupancy and the load at the output port, and therefore the source's true transmission rate, do not play
any role in the ER calculation.

Such rate decoupling property has important applications in transporting rate-adaptive compressed video using
a feedback control mechanism. In Ref. 25, we proposed a novel source rate adaptation algorithm, which exploits



such decoupling property of a source's true transmission rate and ACR variable used for protocol convergence. We
demonstrated that such rate decoupling property, once employed by a source, can make the source's transmission
rate converge smoothly to the �nal optimal rate allocation without going through frequent rate 
uctuations during
a transient period, which is undesirable for video applications.

Class 1 algorithms are unable to o�er such a rate decoupling property since the explicit rate calculation for each

ow uses the bu�er occupancy and load information, and a source's true transmission rate must be used in the ER
calculation for the proper operation of the overall 
ow control algorithm.

Sensitivity to System Parameters

There are many ad hoc system parameters in Class 1 heuristic algorithms such as � for exponential averaging,
bu�er threshold for ER adjustment and AIR. The performance of Class 1 algorithms under a particular network
con�guration and the set of link distances are sensitive to the settings of these parameters.

On the other hand, Class 2 algorithms (e.g. Algorithm 7) do not use such ad hoc parameters and have guaranteed
performance to the particular rate allocation policy (GMM or WPMM) under any network con�guration and any
set of link distances.

Applicable Networks

Class 1 heuristic algorithms are shown to be a viable solution to achieve the rate allocation in a local area network
environment, where the set of link distances are small, and therefore, the systems parameters are fairly easy to set.
As the set of link distances increase, the proper setting of system parameters become increasingly di�cult and thus,
the performance of Class 1 algorithms also degrades (e.g. large oscillations in a source's rate). The fundamental
di�culty lies in the fact that we use one common shared queue for each 
ow at a switch output port and it is not
possible to isolate 
ows and tune the system parameters for each 
ow. Later, we will discuss how per 
ow queuing
may be employed to alleviate this problem and help to improve the performance of Class 1 algorithms in a wide area
network.

Since Class 2 algorithms (e.g. Algorithm 7 for GMM) provide guaranteed convergence to the prede�ned rate
allocation policy under any network con�guration and any set of link distances, they can be used for both LAN and
WAN. The only problem associated with such algorithms is the scalability issue associated with the state table at
each output port, which we discuss as follows.

State Requirement and Scalability Issues

State requirement refers to the number of variables required at each output port of a switch for the purpose of
explicit rate calculation. As shown in Section 3.2, Class 1 algorithms such as Algorithm 5 for WPMM require only a
constant number of variables at each switch output port and is thus scalable to the number of traversing 
ows. On
the other hand, Class 2 algorithms in Section 3.3 (e.g. Algorithm 7 for GMM) have to maintain a table for keeping
track of the state information of each individual traversing 
ow. Since each 
ow occupies one entry in the table, the
table size will grow as the number of traversing 
ows increases.

Such one 
ow per entry requirement for Class 2 algorithms is driven by the fact that we allow the rate of each

ow take any value from a continuous real value interval (and thus in�nite states). In Ref. 11, a scheme to reduce the
state information was introduced by restricting the set of supported rates to a �xed and countable number of discrete
states. Such compromise enables the switch to maintain a �xed size table (determined by the number of discrete
rate levels) instead of per 
ow rates. This is analogous to de�ning a discrete number of service classes instead of
having a continuous range of service class in the broader context of service options in packet networks. Note that
such a 
ow aggregation technique is itself a tradeo� between performance latitude and implementation complexity.

Computational Complexity

Computational complexity refers to the number of times and type of mathematical operations required to perform
explicit rate calculation for each traversing control packet.

Class 1 exponential averaging based heuristic algorithms has the attractive feature ofO(1) computation complexity
since only a constant small number of switch variables are used to calculate explicit rate.

Class 2 algorithms such as Algorithm7 for GMM have O(N ) computational complexity. However, if we can replace
the in�nite rate states for each 
ow with a �xed and countable number in a discrete state space, the computational
complexity can be reduced to O(log(N )).11



Queuing and Scheduling

We refer queuing as the bu�ering strategy for the packets arriving at the same output port from multiple input 
ows
and attribute scheduling to the service discipline for the packets stored at the output port.

The queuing (or bu�ering) strategy employed for both Class 1 and Class 2 algorithms is one common shared queue
for all 
ows and the scheduling policy used is the simple �rst-in-�rst-out (FIFO) service discipline. It should be clear
that since both classes of algorithms are rate calculation algorithms and are not concerned with rate enforcement,
many other scheduling policies can also be used. Furthermore, it has been shown that the rate-based feedback control
mechanism is robust to the occasional loss of packets, i.e., some packets loss will not alter the �nal rate allocation
for each 
ow and the stability of the algorithm.31

We would like to point out that if we use a sophisticated bu�ering strategy such as per 
ow queuing in combination
with an appropriate scheduling mechanism, we may design a 
ow control algorithm to achieve our rate allocation
objective.7,14,19,32 In particular, it has been shown in Ref. 14 that by using per 
ow queuing, greater control can be
exercised for each 
ow and an exponential averaging type heuristic algorithm (Class 1) can be easily extended for
rate calculations on each 
ow for improved performance in a wide area network. This is because per 
ow queuing
enables us to tune system parameters for each individual 
ow. In Ref. 7, it has been shown that once 
ows are
isolated with per 
ow queuing, a control theoretic approach may be employed for rate calculation.

Other Extensions

Even though the speci�c distributed 
ow control algorithms that we presented use ATM ABR terminology, it should
be clear that the general methodology of this work is very general and is applicable to network tra�c management
of any 
ow oriented packet switching networks. For example, the �xed-sized packet requirement for ATM can be
relaxed in packet networks with variable-sized packets without a�ecting the overall rate convergence property. Also,
it is not necessary to have the returning control packets to follow the same path as the forward path. Should the
control packets use a di�erent returning path, we can set the explicit rate information in the forward control packets.

Both the WPMM and GMM rate allocation policies support a minimum requirement for each 
ow. However, it
is sometimes di�cult for each 
ow to have an accurate prior estimate of its minimum required rate. Therefore, it
will be very useful that a user can renegotiate its minimum rate requirement should he/she �nd it necessary. The
distributed 
ow control algorithms we presented are capable to support such minimum rate renegotiation options.25

Since a minimum rate guarantee provides some kind of constant bit rate (CBR)-like service for each 
ow, the
minimum rate renegotiation option is very similar to the renegotiation CBR (RCBR) concept introduced in Ref. 18.
Unlike RCBR, the distributed 
ow control algorithms we discussed in this paper are capable to further explore any
additional network bandwidth and can achieve a rate allocation objective (i.e. WPMM or GMM) for each 
ow.

The rate allocation policies discussed in this paper supports point-to-point packet 
ow from one source to one
destination. It is straight-forward to de�ne point-to-multipoint (or multicast) versions of WPMM or GMM rate
allocation policies using similar concepts in the centralized rate allocation algorithms, i.e. Algorithm 3 for WPMM
and Algorithm 2 for GMM. For the design of distributed 
ow control algorithms for a multicast rate allocation policy,
it has been shown in Ref. 42 that under very general requirements, a unicast rate-based 
ow control algorithm can be
extended to support multicast rate allocation policy with guaranteed performance and minimal additional complexity
in the control packets.

4. CONCLUDING REMARKS

This paper presented an in-depth study on the network bandwidth allocation policies and their distributed 
ow
control algorithms for packet networks. A major motivation of this work came from the intense research e�orts
focused on ATM ABR service for the past several years. However, the objective of this paper is not to reiterate the
details of ABR standards, but rather to show some fundamental tra�c management principles behind ABR, which
is general enough in the broader context of 
ow oriented packet switching networks.

We examined the classical max-min rate allocation and presented two rate allocation policies that generalize
the max-min with a minimum rate support and a peak rate constraint for each connection. We classi�ed the
many algorithms in the literature into two broad classes based on how much state information is required at the
switch for feedback rate calculation and discussed the tradeo�s between these two classes of algorithms in terms of
convergence property, rate decoupling property, sensitivity to system parameters, applications, state requirement,



computational complexity, and queuing and scheduling disciplines. We show that the choice of a particular algorithm
is largely a tradeo� between performance objectives and implementation complexities. Furthermore, we showed how
sophisticated per 
ow queuing and scheduling discipline may be incorporated into both classes of algorithms for
improved performance.

As networking technologies keep advancing and new user application requirements grow, research on feedback-
based congestion and 
ow control will continue to attract interest. We hope the experience we summarized in this
paper on rate allocation policies and distributed rate calculation algorithms will serve as a valuable reference for
both researchers and network planners when they design or deploy a particular feedback control algorithm for their
network.
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